40 research outputs found

    Tumor Growth Rate Estimates Are Independently Predictive of Therapy Response and Survival in Recurrent High-Grade Serous Ovarian Cancer Patients

    Get PDF
    This study aimed to assess the predictive value of tumor growth rate estimates based on serial cancer antigen-125 (CA-125) levels on therapy response and survival of patients with recurrent high-grade serous ovarian cancer (HGSOC). In total, 301 consecutive patients with advanced HGSOC (exploratory cohort: n = 155, treated at the Medical University of Vienna; external validation cohort: n = 146, from the Ovarian Cancer Therapy–Innovative Models Prolong Survival (OCTIPS) consortium) were enrolled. Tumor growth estimates were obtained using a validated two-phase equation model involving serial CA-125 levels, and their predictive value with respect to treatment response to the next chemotherapy and the prognostic value with respect to disease-specific survival and overall survival were assessed. Tumor growth estimates were an independent predictor for response to second-line chemotherapy and an independent prognostic factor for second-line chemotherapy use in both univariate and multivariable analyses, outperforming both the predictive (second line: p = 0.003, HR 5.19 [1.73–15.58] vs. p = 0.453, HR 1.95 [0.34–11.17]) and prognostic values (second line: p = 0.042, HR 1.53 [1.02–2.31] vs. p = 0.331, HR 1.39 [0.71–2.27]) of a therapy-free interval (TFI) < 6 months. Tumor growth estimates were a predictive factor for response to third- and fourth-line chemotherapy and a prognostic factor for third- and fourth-line chemotherapy use in the univariate analysis. The CA-125-derived tumor growth rate estimate may be a quantifiable and easily assessable surrogate to TFI in treatment decision making for patients with recurrent HGSOC

    Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet)

    Get PDF
    Pearl millet is the fifth most important cereal crop worldwide and cultivated especially by small holder farmers in arid and semi-arid regions because of its drought and salt tolerance. The molecular mechanisms of drought stress tolerance in Pennisetum remain elusive. We have used a shotgun proteomics approach to investigate protein signatures from different tissues under drought and control conditions. Drought stressed plants showed significant changes in stomatal conductance and increased root growth compared to the control plants. Root, leaf and seed tissues were harvested and 2281 proteins were identified and quantified in total. Leaf tissue showed the largest number of significant changes (120), followed by roots (25) and seeds (10). Increased levels of root proteins involved in cell wall-, lipid-, secondary- and signaling metabolism and the concomitantly observed increased root length point to an impaired shoot–root communication under drought stress. The harvest index (HI) showed a significant reduction under drought stress. Proteins with a high correlation to the HI were identified using sparse partial least square (sPLS) analysis. Considering the importance of Pearl millet as a stress tolerant food crop, this study provides a first reference data set for future investigations of the underlying molecular mechanisms

    Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    Get PDF
    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis

    Analyse PrimÀrrecht

    Full text link

    Analyse PrimÀrrecht

    Full text link

    Large-Eddy Simulation of Flow over a Wall-Mounted Hump with Separation Control

    No full text
    corecore